Office of Chemical Safety
Laboratory Safety Visit Preparedness

[Website URL]
608-265-5700
Chemsafety@fpm.wisc.edu
The UW-Madison Chemical Safety Office:

- Establishes policies and procedures for the safe acquisition, use, storage, and disposal of chemicals on campus.
- Helps the university community comply with federal, state, and local regulations.
- Provides training related to chemical and laboratory safety.
- Manages disposal of all hazardous waste.
- Responds to emergency events.
- Reviews accidents, incidents and close calls.
- Supports ~3200 labs on campus.
 - Almost all use hazardous chemicals!

Our **ultimate goal** is to help create a university where safety is deemed a primary value and not an afterthought.
We walk through the lab with you, discuss your laboratory operations, and make recommendations as needed.

Our basic areas of review are:
- Documentation
- Egress and Housekeeping
- Emergency Equipment
- Chemical Safety
- Compressed Gasses
- Personal Protective Equipment
- Ventilation and Engineering Controls

Most importantly our visits allow us to discuss your specific lab work to help identify best practices for safe chemical usage.
Emergency door card

- Notifies emergency personnel of any hazards to expect when responding to an emergency.
- Provides contact information for key laboratory and emergency personnel

Can be downloaded here: https://ehs.wisc.edu/forms-manuals-signs/
Is a *Laboratory Specific Chemical Hygiene Plan (CHP)* available?

- Required by OSHA for all laboratories with hazardous materials
- Outlines laboratory policies for handling chemicals and protecting workers

Are laboratory Standard Operating procedures (SOPs) available?

- Key component of laboratory specific CHP
- SOP's are documentation of how procedures are done in your lab. They explain what the chemicals used in the procedure are, what hazards are associated with them, and what controls are needed to be safe.

For more information or to download a template, visit our website: https://ehs.wisc.edu/chemical-hygiene-plan/
Are Safety Data Sheets (SDS) available?

- An SDS is a written document containing information about the specific properties of a chemical.
- SDSs are provided by the chemical manufacturer.
- OSHA requires SDSs to be available for all hazardous chemicals.
- Become familiar with the different sections of an SDS.

Contact our office if you need assistance finding an SDS at chemsafety@fpm.wisc.edu.
Have employees taken Chemical Safety Training, or received training in General Safety Practices and the OSHA Laboratory Standard?

- All employees must receive training on the hazards associated with the space they work in.
- Our Chemical Safety Training is available to all laboratory workers. This fulfills the OSHA Laboratory Standard training requirement. See our website for more information.

Have employees received training in Lab-Specific Procedures and Emergency Response (spills, exposures)?

- The PI is responsible for ensuring that everyone in the lab is properly trained.
- Our office will provide in-lab training about specific procedures upon request. Further training should be provided in your lab by your PI or lab manager.

Are training records available?

- All trainings should be documented and records available.
Are *egress pathways* kept unobstructed and free of trip hazards?

- Egress pathways are the ways you exit the lab in an emergency. If pathways are blocked or obstructed, an employee would have a problem exiting the building.
Is the consumption or storage of food and beverages prohibited in the laboratory?

- Prevents accidental ingestion of hazardous materials
Egress and Housekeeping

Are benchtops and working surfaces kept clean and uncluttered?

- Are benchtops clean and available for work?
- Are surfaces clear of chemical residue?

Are glass and other “sharps” disposed of appropriately?

- **Medical Sharps**
 - Designed to cut or puncture
 - Needles, razor blades
 - Need puncture-resistant containers

- **Hazardous glass and plastics**
 - Can puncture, cut, or scratch
 - Broken glass, pipettes
 - Use plastic-lined, sturdy boxes

See website for further details: https://ehs.wisc.edu/sharps-disposal/
Is an emergency *safety shower* and an *eyewash station* readily available for immediate use?

- Required when a worker could be exposed to any hazardous materials
- Must be located within 10 seconds of travel

Is the emergency eye wash station operational and flushed weekly, and is the safety shower tested yearly?

- Eye washes can build up bacteria or mineral deposits if they are not flushed weekly.
- Records of safety shower and eyewash station flushes must be available. See our website for an eyewash log.
Are eyewashes, emergency showers, fire extinguishers, and electrical panels kept accessible and unobstructed?

- Emergency equipment must remain accessible at all times
- 36” of clearance is typically required
Is a chemical spill kit available and adequate for the work being performed

- Includes proper absorbent, PPE, broom and dustpan, and bucket to collect materials
- Need enough absorbent for largest chemical container
- Don’t forget neutralizers for corrosive spills
Do *sprinklers* have at least 18” of clearance?

- Obstructions can decrease effectiveness of sprinklers
- Objects need to be kept 24” below the ceiling in buildings that do not have sprinklers.
Is an appropriate *fire extinguisher* available?

Extinguisher types:

- **Class ABC**: combustibles, flammable liquids, electrical fires.
- **Class D**: metal fires

Do not use an ABC extinguisher on a metal fire

See website for further details: https://ehs.wisc.edu/fire-extinguishers/
Chemical Safety

Are all chemicals stored according to *compatibility*?

- Segregate chemicals which could react with each other or their surroundings
 - Acid and bases stored separately
 - Flammables and combustibles stored away from Oxidizers
 - Water reactive substances stored away from any potential water source
 - Highly toxic substances segregated from others

Additional information on chemical compatibility can be requested from [Chemical Safety](#).
Chemical Safety

Are flammable, corrosive, toxic or reactive chemicals stored in approved chemical storage cabinets or locations?

- Cabinets must be appropriately rated
- Cabinets contain chemicals and protect the surrounding lab
- Proper storage also increases allowed quantities
Chemical Safety

Are all chemical containers kept closed, not leaking and in good condition?
• Open containers are easier to spill and release vapors
• EPA rules do not allow disposal by evaporation

Are all chemical containers labeled to identify the contents and any applicable hazard warnings?
• Containers must have full chemical names and applicable hazards
• Replace worn or missing labels
Are hazardous chemicals stored below eye level?

- If hazardous chemicals are stored above eye level, the chances of exposing the face and head to chemical spills increases.
- Keep heavy containers on lower shelves
- Try to use shelves with raised edges
- Use secondary containers

Stored too high
Chemical Safety

Are flammable liquids that require refrigeration stored in approved refrigerators or freezers?

- Must be rated for flammable or modified to be spark-proof
- Vapors from flammables can create explosive atmosphere

Are hazardous liquid chemicals stored in a refrigerator or freezer kept in a secondary container?

- Contains leaks and spills
- Protects refrigerator and workers
Are flammable liquids greater in quantity than 10 gallons stored in a flammable storage cabinet?

- OSHA limits flammables to 10 gal. per laboratory outside rated cabinets
- Fire codes are often more restrictive
 - Maximum allowable quantities (MAQ) are based on fire control areas (not per lab) and change based on which floor in a building.
 - Contact EH&S for details on your specific laboratory
Are peroxide-forming reagents dated when first opened?

- These are compounds which can auto-oxidize to form potentially explosive organic peroxides over time.
- Examples of peroxide formers are: Acetaldehyde, Benzyl Alcohol, Butadiene, 2-Butanol, Chloroprene, Cyclohexanol, Cyclohexene, Diethyl ether, Dioxanes, Divinylacetylene, Isopropyl ether, 2-Phenylethanol, 2-Propanol, Tetrafluoroethylene, Tetrahydroforan, Tetrahydronaphthalene, Vinylidene chloride, Vinyl ethers

Are peroxide-forming reagents disposed of or tested at or before the expiration date?

- Contact Chemical Safety if you do not know what the peroxide-forming chemical’s expiration date is or the date when the chemical was opened.
Are precautions and appropriate PPE used when working with perchloric or hydrofluoric acid?

- Perchloric and hydrofluoric acids are particularly hazardous acids
- Perchloric acid requires a special fume hood to avoid buildup of dangerous perchlorate salts
- Hydrofluoric acid burns are very dangerous and require immediate medical attention
- If you have any questions about precautions that should be taken with these acids, contact Chemical Safety.
Are waste carboys and surplus chemical containers properly labeled and have the contents been identified?

- Contact EH&S if you need containers for hazardous waste. We drop off and pick up containers free of charge.
- Here are the containers we provide to labs:
 - Non-halogenated organic solvent carboy
 - Halogenated organic solvent carboy
 - Silica waste carboy
- Remember, only our carboys should use the term “waste!”

See website for further information on disposal: https://ehs.wisc.edu/disposal-services/
Is waste containers kept closed and stored away from drains or in a secondary container?

- Waste containers must remain closed when not being filled.
- The use of secondary containers reduces the risk that hazardous waste enters the environment.
Chemical Safety

Are particularly hazardous substances only used with prior approval, using appropriate control measures and in a posted, designated area?

- OSHA designates certain chemicals as particularly hazardous
 - Select Carcinogens
 - Reproductive toxins
 - Acutely toxic chemicals
- Employees must be trained and made aware of the hazards associated with these chemicals
- See appendix D in the Laboratory Safety Guide for more information
Are *compressed gas cylinders* properly labeled?

Are compressed gas cylinders transported using hand trucks?
- Never roll a cylinder on its end!
Are compressed gas cylinders properly secured and stored by compatibility?

- Gas cylinders need to be securely chained at all times.
- When not in use they must have a safety cap.
- Flammable gas and oxygen must be stored 20 ft apart, or separated by an appropriate fire-rated wall.

The chains must be strong enough to hold the cylinders in place, with a chain placed within ½ to ¾ of the cylinder height.
Are compressed gas lines and fittings on equipment regularly checked for problems?

- Soapy water is best to check for leaks
- Monitor usage for irregularities
Are High-Hazard Gas Cylinders used only after approval from EH&S?

• Release of dangerous gases is particularly dangerous and difficult to contain

• Campus Chemical Hygiene Plan requires prior approval to use certain gasses
 • All gases that are designated by Global Harmonization System (GHS) classification as Category 1 or 2 for acute toxicity
 • All corrosive gases as designated by GHS, including both gases that are corrosive to the skin and/or corrosive to metal
 • All pyrophoric gases.
Are lab coats, safety glasses, splash goggles, and chemical protective gloves available?
• Lab SOPs should specify exact PPE needs.

Is reusable PPE maintained and stored in a clean and serviceable condition?
• Always check the condition of the PPE before using.
• Clean reusable PPE on a regular basis.
Have *PPE hazard assessments* been conducted for job tasks that require PPE?

- An important part of standard operation procedures (SOP) is assessing the need for PPE for that operation and noting it in the SOP.
- Potential routes of entry dictate protective equipment.
- Engineering controls should always be considered first.
Is appropriate eye protection worn at all times?

- Safety glasses, goggles, and face shields should be available based on the needs of the work being done
- Splashes, flying debris, or optical radiation hazards can impact people that are not directly working on an experiment
- Note: Campus chemical safety committee mandates that anyone working in a lab where they could potentially be exposed to hazardous materials must wear a minimum of safety glasses at all times!
- Contact UHS for information on prescription eyewear

Are lab coats required by all personnel when a chemical hazard exists?

- Carefully select lab coats made of the appropriate material
- Launder coats regularly to reduce contamination
Are opened toed shoes prohibited in the laboratory?

- Open toed shoes cause unnecessary risks of chemical exposure as well as a physical hazard associated with broken glass.
- Mandated by OHSA and the campus Chemical Safety Committee!
Have employees that use a respirator been trained, fit tested and medically cleared?

- If an employee has to wear a respirator it is required by law that they be fit tested with that respirator and be medically cleared to wear that respirator.
- If you have questions or believe you may need to wear a respirator, contact EH&S to evaluate.
- If you have employees that need to be fit tested, contact UHS.
Are appropriate gloves selected and worn when a risk of skin contact with a hazardous chemical exists?

- Consult manufacturers compatibility charts for glove selection
- Have multiple glove types available

Note that some chemicals such as chloroform can permeate nitrile gloves.
Ventilation and Engineering Controls

Are fume hoods annually certified and labeled with a current inspection sticker?

- Green for Pass, Yellow for Caution, Red for Warning
- Inspected annually or upon request

All fume hoods are equipped with a flow monitor in order to ascertain the operational status of the chemical fume hood.

- If alarm sounds:
 - Check sash openings
 - Check for obstructions
 - Contact physical plant for further assistance
When chemical fume hoods are in use, are hazardous materials kept at least 6 inches behind the plane of the sash and is the sash kept as low as possible?

- Allows for proper air flow and containment

Are the hoods free of clutter?

- Air flow must not be inhibited
- Storage of chemicals and equipment must be kept to a minimum

Do not put chemicals close to the front. Keep at least 6 inches back.
Do you make sure you use a snorkel trunk or chemical fume hood when operating equipment or conducting a process that emits hazardous vapors?

- Canopy hoods are not for use with hazardous materials
- BSCs and other enclosures do not provide the same protection as fume hoods.
Ventilation and Engineering Controls

Are cryogens used and stored in a well-ventilated location?

Cryogens can displace oxygen, creating a potentially fatal environment if proper ventilation is not available. Note that we offer an online safety course about using cryogens.
Is laboratory equipment properly safeguarded?

- Does all equipment have appropriate shielding/guarding?
- Are interlocks needed for any equipment?
- Are extension cords being used?
Please let us know if you have any questions before your upcoming lab visit. We look forward to working with you.